Abstract
Long-distance light detection and ranging (LiDAR) applications require an aperture size in the order of 30 mm to project 200–300 m. To generate such collimated Gaussian beams from the surface of a chip, this work presents a novel waveguide antenna concept, which we call an “optical leaky fin antenna,” consisting of a tapered waveguide with a narrow vertical “fin” on top. The proposed structure (operating around λ=1.55 μm) overcomes fundamental fabrication challenges encountered in weak apodized gratings, the conventional method to create an off-chip wide Gaussian beam from a waveguide chip. We explore the design space of the antenna by scanning the relevant cross section parameters in a mode solver, and their sensitivity is examined. We also investigate the dispersion of the emission pattern and angle with the wavelength. The simulated design space is then used to construct and simulate an optical antenna to emit a collimated target intensity profile. Results show inherent robustness to crucial design parameters and indicate good scalability of the design. Possibilities and challenges to fabricate this device concept are also discussed. This novel antenna concept illustrates the possibility to integrate long optical antennas required for long-range solid-state LiDAR systems on a high-index contrast platform with a scalable fabrication method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.