Abstract
We present a scheme to implement a Fermi-Hubbard-like model in ultracold atoms in optical lattices and analyze the topological features of its ground state. In particular, we show that the ground state for appropriate parameters has a large overlap with a lattice version of the bosonic Laughlin state at filling factor one-half. The scheme utilizes laser assisted and normal tunneling in a checkerboard optical lattice. The requirements on temperature, interactions, and hopping strengths are similar to those needed to observe the N\'eel antiferromagnetic ordering in the standard Fermi-Hubbard model in the Mott insulating regime.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.