Abstract

An optical lattice operated at the “magic wavelength” provides a platform for precision metrology of time and frequency, where an atomic ensemble serves as a reference with precisely-controlled quantum states. Such an optical lattice clock allows extremely high accuracy and stability at the level of 10−18. This review outlines the principles and experimental realization of optical lattice clocks, in particular, the demonstration of quantum projection noise limited stability and the reduction of the uncertainty induced by the blackbody radiation. As a future prospect, we discuss the application of optical lattice clocks as a tool for relativistic geodesy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call