Abstract

A new method to track the motion of a single particle in the field of a high-finesse optical resonator is analyzed. It exploits sets of near-degenerate higher-order Gaussian cavity modes, whose symmetry is broken by the position dependent phase shifts induced by the particle. Observation of the spatial intensity distribution outside the cavity allows direct determination of the particle's position. This is demonstrated by numerically generating a realistic atomic trajectory using a semiclassical simulation and comparing it to the reconstructed path. The path reconstruction itself requires no knowledge about the forces on the particle. Experimental realization strategies are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.