Abstract

We report the first photoluminescence investigation of GaAs-Ga0.51In0.49P lattice matched multiquantum wells grown by the low pressure metalorganic chemical vapor deposition simultaneously in the same run on GaAs, Si, and InP substrates. The sharp photoluminescence peaks indicate the high quality of the samples on three different substrates. The temperature dependence of the photoluminescence indicates that the intrinsic excitonic transitions dominate at low temperature and free-carrier recombinations at room temperature. The photoluminescence peaks of the samples grown on Si and InP substrates shift about 15 meV from the corresponding peaks of the sample grown on the GaAs substrate. Two possible interpretations are provided for the observed energy shift. One is the diffusion of In along the dislocation threads from GaInP to GaAs and another is the localized strain induced by defects and In segregations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call