Abstract
We have used resonant and non-resonant Raman scattering as well as photoluminescence and cathodoluminescence experiments to study the structure and composition properties of CdxZn1−xSe formed by migration enhanced epitaxy of CdSe layers on ZnSe buffers. The spectral change of the photoluminescence maximum correlates with the increase of the Cd content, depending on the nominal CdSe thickness in the 1.5–3.0 ML range. The inhomogeneous broadening of the photoluminescence band is caused by the composition difference between the two-dimensional mixed CdxZn1−xSe layer and the inserted islands with larger Cd concentration. This is confirmed by phonon frequency changes in resonant Raman scattering for samples with different nominal CdSe thicknesses as well as in Stokes and anti-Stokes frequency changes observed in the 1.5 ML sample. Attention is paid to the role of defects on Raman scattering and photoluminescence for the 3.15 ML sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.