Abstract
In this paper, we realize growth of the delta doped layer (3 nm thick) with high concentration of nitrogen atoms (about 1.4 × 1019 cm−3) during CVD diamond growth process. We experimentally investigate the distribution of the nitrogen inside the grown layer and formation of the NV centers during such growth. Using confocal microscopy, we analyze the spatial distribution of the NV centers and investigate the formation efficiency of the NV centers in delta doped layers. The spatial distribution is measured by two methods, using second-order correlation function and emission volume analysis, and NV center concentration is found to be 3.9 ± 0.6 and 2.7 ± 0.2 μm-2 consequently. The divergence between the methods is discussed. As-grown NV centers formation efficiency was found to be 30 times lower than in the case of uniform doped diamond growth. Nevertheless, coherence time of an electron spin for a single NV center inside the delta layer was found to be around 1 μs which is quite reasonable given the concentration of the nitrogen in the sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.