Abstract

The subnanosecond operation of fast all-optical inverter gates has been investigated. Typical samples are 500- to 800-μm Cd 0.96 Zn 0.04 Te platelets without a Fabry-Perot cavity thermalized around 80 K. Input and output beams operate at the same wavelength. The transmission of the sample is studied around the material band-gap energy ( E G = 1.613 eV, i.e., λ = 768 nm) versus the pump intensity. All-optical inversion is observed, based on a nonlinear absorption that appears below the band gap in the picosecond regime. The best switch energy is typically 3 to 5 pJ/μm 2 (i.e., 0.3 to 0.5 mJ/cm 2 ) around the wavelength λ = 782 nm. From the analysis of the sample transmission under excitation, the possibility of stable operations with a good contrast of 4:1 between the high and the low logical states is shown. An optical amplifier has been combined with the inverter to get an output level as high as the input. The operation of the gate-amplifier stage that is cascadable with a contrast better than 2:1 is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.