Abstract

We propose a fundamental interconnection method using a polarization alignment system for waveguides having different spatial modes. In addition, as an example for the verification of the fundamental operation, we demonstrate an interconnection between a photonic crystal fiber and a laser that have obviously different spatial modes. The polarization alignment system operates synergistically with a self-written waveguide formed with a double phaseconjugate mirror. This technique enables us to interconnect a photonic crystal fiber with a laser source without complicated and time-consuming optical alignment. In this method, although it is not necessary to perform an external control for interconnection, the waveguide most suitable for connection is formed autonomously in a Sn2P2S6:Sb crystal developed for this purpose. There was a marked reduction in the polarization dependence of coupling efficiency, compared with that observed using a stand-alone double phase-conjugate mirror.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.