Abstract

An analytical solution of the quantum problem of an electron on a spherical segment with angular confinement potential in the form of rectangular impenetrable walls is presented. It is shown that the problem is reduced to finding solution of hypergeometric equation. On the basis of the obtained results the optical interband transitions in this system are discussed, and the threshold frequency and absorption coefficient both for single structure and non-interacting ensemble are calculated. The influence of electric field on system is discussed and it is shown that in such type of structure linear Stark shift takes place. Quantum transitions in the presence of electric field are considered and it is shown that the selection rule for an orbital quantum number analogue is removed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.