Abstract

ObjectivesHigh-resolution microendoscopy (HRME) is an optical imaging modality that allows real time imaging of epithelial tissue and structural changes within. We hypothesize that HRME, using proflavine, a contrast agent that preferentially stains cell nuclei and allows detection of cellular morphologic changes, can distinguish sinonasal pathology from uninvolved mucosa, potentially enabling real-time surgical margin differentiation. Study designEx vivo imaging of histopathologically confirmed samples of sinonasal pathology and uninvolved, normal sinus epithelium. SettingSingle tertiary-level institution. Subjects and methodsFive inverted papillomas, one oncocytic papilloma, two uninvolved sinus epithelia specimens, and three inflammatory polyps were imaged ex vivo with HRME after surface staining with proflavine. Following imaging, the specimens were submitted for hematoxylin and eosin staining to allow histopathological correlation. ResultsResults show that sinonasal pathology and normal sinus epithelia have distinct HRME imaging characteristics. Schneiderian papilloma specimens show increased nuclear-to-cytoplasmic ratio, nuclear crowding, and small internuclear separation, whereas normal sinus epithelia specimens show small, bright nuclei with dark cytoplasm and relatively large internuclear separation. Inflammatory polyps, however, have varying imaging characteristics, that resemble both Schneiderian papilloma and normal sinus epithelia. ConclusionsThis study demonstrates the feasibility of HRME imaging to discriminate sinonasal pathology from normal sinus epithelia. While the system performed well in the absence of inflammation, discrimination of inflamed tissue was inconsistent, creating a significant limitation for this application. Novel imaging systems such as HRME with alternative contrast agents may assist with real-time surgical margin differentiation, enabling complete surgical resection of inverted papilloma and reducing recurrence rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.