Abstract

Background: Non-invasive electrocardiographic imaging (ECGI) is a promising tool to provide high-resolution panoramic imaging of cardiac electrical activity noninvasively from body surface potential measurements. Current experimental methods for ECGI validation are limited to comparison with unipolar electrograms and the relatively low spatial resolution of cardiac mapping arrays. We aim to develop a novel experimental set up combining a human shaped torso tank with high-resolution optical mapping allowing the validation of ECGI reconstructions.Methods: Langendorff-perfused pig hearts (n = 3) were suspended in a human torso-shaped tank, with the left anterior descending artery (LAD) cannulated on a separate perfusion. Electrical signals were recorded from an 108-electrode epicardial sock and 128 electrodes embedded in the tank surface. Simultaneously, optical mapping of the heart was performed through the anterior surface of the tank. Recordings were made in sinus rhythm and ventricular pacing (n = 55), with activation and repolarization heterogeneities induced by perfusion of hot and cold solutions as well as Sotalol through the LAD. Fluoroscopy provided 3D cardiac and electrode geometries in the tank that were transformed to the 2D optical mapping window using an optimization algorithm. Epicardial unipolar electrograms were reconstructed from torso potentials using ECGI and validated using optical activation and repolarization maps.Results: The transformation and alignment of the 3D geometries onto the 2D optical mapping window was good with an average correlation of 0.87 ± 0.10 and error of 7.7 ± 3.1 ms with activation derived from the sock. The difference in repolarization times were more substantial (error = 17.4 ± 3.7 ms) although the sock and optical repolarization patterns themselves were very similar (correlation = 0.83 ± 0.13). Validation of ECGI reconstructions revealed ECGI accurately captures the pattern of activation (correlation = 0.79 ± 0.11) and identified regions of late and/or early repolarization during different perfusions through LAD. ECGI also correctly demonstrated gradients in both activation and repolarization, although in some cases these were under or over-estimated or shifted slightly in space.Conclusion: A novel experimental setup has been developed, combining a human-shaped torso tank with optical mapping, which can be effectively used in the validation of ECGI techniques; including the reconstruction of activation and repolarization patterns and gradients.

Highlights

  • Non-invasive electrocardiographic imaging (ECGI) is a promising tool to provide high-resolution panoramic imaging of cardiac electrical activity noninvasively from body surface potential measurements (Rudy, 2013)

  • While this means the gross abilities of ECGI to reconstruct cardiac activity can be evaluated, they may not be reliable to assess the accuracy of high-resolution spatial and temporal features such as slow conduction, line of block and/or repolarization gradients

  • Three representative electrograms and same with late repolarization seen in the left anterior descending artery (LAD) perfusion bed

Read more

Summary

Introduction

Non-invasive electrocardiographic imaging (ECGI) is a promising tool to provide high-resolution panoramic imaging of cardiac electrical activity noninvasively from body surface potential measurements (Rudy, 2013). A multitude of methods have been, and are still being developed to overcome this (such as regularization) (Tikhonov and Arsenin, 1977; Colli-Franzone et al, 1985a; Wang and Rudy, 2006) Given this ill-posed nature, robust validation is essential for the complete adoption of this powerful technique clinically. While there are often several hundred electrodes in the arrays used to provide ground truth data, the spatial resolution (number of electrodes per unit area) is typically lower than that of the cardiac mesh used for ECGI reconstructions While this means the gross abilities of ECGI to reconstruct cardiac activity can be evaluated, they may not be reliable to assess the accuracy of high-resolution spatial and temporal features such as slow conduction, line of block and/or repolarization gradients. We aim to develop a novel experimental set up combining a human shaped torso tank with high-resolution optical mapping allowing the validation of ECGI reconstructions

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.