Abstract

We used large-array optical recording procedures to examine maturation of regional neural activity within the ventral medullary surface (VMS) of anaesthetized kittens during graded hypercapnic and hypoxic challenges. The VMS was exposed through a ventral surgical approach in 10, 20, 30, and 45-day-old kittens and in adult cats under sodium pentobarbital anaesthesia. Arterial pressure, costal diaphragmatic EMG, and ECG were continuously monitored. A coherent image conduit with 12 mu fibre resolution was attached to a charge-coupled-device camera and positioned over the VMS. Reflected 660 nm light was digitized continuously at 2-s intervals during a baseline period, hyperoxic hypercapnia, (3, 5, and 10% CO2 in O2), and poikylocapnic hypoxia (6%, 9%, and 12% O2 in N2), and recovery. Sixty to seventy-five images within each epoch were averaged, and subtracted from baseline. Regional differences within the image were determined by ANOVA procedures (alpha = 0.05). During hypercapnia, an overall decrease in neural activity (increase in scattered light) occurred, which was marginally age-dependent. By 30 days, regional bidirectional reflectance changes in response to CO2 emerged in a small proportion of animals, and were similar to adult responses. Hypoxia induced a dose- and age-dependent decrease in overall scattered light. Transient "on" and "off" responses were common under both ventilatory stimuli. In 20-30-day kittens, marked rebound responses in reflectance accompanied cessation of hypoxic stimuli; such patterns were absent at other ages. At 30 days, a caudal-rostral bidirectionality in response to mild hypoxia (12% O2) began to emerge in a subset of animals. We conclude that dose-dependent response to ventilatory stimuli occur in the VMS at all post-natal ages of the kitten; however, in hypoxia, the magnitude of the overall reflectance changes is diminished relative to adult patterns. Rebound responses to hypoxia are present at particular ages, and older kittens begin to show a topographical organization of neural activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.