Abstract

The effects of in-plane electric fields on the director structure of cholesteric liquid crystals has been imaged in three dimensions using fluorescence confocal polarizing microscopy. The results show that a liquid crystal lying outside the electrode gap can be significantly affected by stray fields occurring above the electrode surface, resulting in a 90 degrees rotation of the cholesteric helix. Distinct differences between the behavior of cholesterics with positive and negative dielectric anisotropies are observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.