Abstract

We imaged the interfacial structure and dynamics of water in a microscopically confined geometry, in three dimensions and on millisecond time scales, with a structurally illuminated wide-field second harmonic microscope. The second harmonic images reported on the orientational order of interfacial water, induced by charge-dipole interactions between water molecules and surface charges. The images were converted into surface potential maps. Spatially resolved surface acid dissociation constant (pKa,s) values were determined for the silica deprotonation reaction by following pH-induced chemical changes on the curved and confined surfaces of a glass microcapillary immersed in aqueous solutions. These values ranged from 2.3 to 10.7 along the wall of a single capillary because of surface heterogeneities. Water molecules that rotate along an oscillating external electric field were also imaged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.