Abstract

AbstractShort laser pulses are widely used for controlling molecular rotational degrees of freedom and inducing molecular alignment, orientation, unidirectional rotation, and other types of coherent rotational motion. To follow the ultrafast rotational dynamics in real time, several techniques for producing molecular movies have been proposed based on the Coulomb explosion of rotating molecules, or recovering molecular orientation from the angular distribution of high harmonics. The present work offers and demonstrates a novel nondestructive optical method for direct visualization and recording of movies of coherent rotational dynamics in a molecular gas. The technique is based on imaging the time‐dependent polarization dynamics of a probe light propagating through a gas of coherently rotating molecules. The probe pulse continues through a radial polarizer, and is then recorded by a camera. The technique is illustrated by implementing it with two examples of time‐resolved rotational dynamics: alignment–antialignment cycles in a molecular gas excited by a single linearly polarized laser pulse, and unidirectional molecular rotation induced by a pulse with twisted polarization. This method may open new avenues in studies on fast chemical transformation phenomena and ultrafast molecular dynamics caused by strong laser fields of various complexities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.