Abstract

This paper presents a public-key-based optical image cryptosystem with adaptive steganography for practical secure communications. The optical image cryptosystem employs a hybrid architecture for ciphering and deciphering in which double random-phase encoding and asymmetric encryption algorithms are utilized for images and session keys, respectively. The session key is safely protected and transmitted by using an asymmetric encryption algorithm and an adaptive steganographic scheme, respectively. To perform the adaptive steganographic scheme, a sorting technique is used to find the suitable embedding position in the embedding domain, a least-significant-bit truncation algorithm is presented to find the invariant hiding order, and a quantization-based data-embedding algorithm is utilized to hide message bits. Experimental results show that the proposed scheme is superior to that of a previous one due to Lin et al., no matter what embedding domain, quantization level, and message size are used. Especially, compared with the latter scheme a large improvement (22.56 dB) of image quality is achieved by using the proposed adaptive steganographic scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.