Abstract

We report hyperpolarization of the electronic spins associated with substitutional nitrogen defects in bulk diamond crystal. Hyperpolarization is achieved by optical pumping of nitrogen vacancy centers followed by rapid cross relaxation at the energy level matching condition in a 51 mT bias field. The maximum observed donor spin polarization is 0.9 \% corresponding to an enhancement by 25 compared to the thermal Boltzmann polarization. A further accumulation of polarization is impeded by an anomalous optical saturation effect that we attribute to charge state conversion processes. Hyperpolarized nitrogen donors may form a useful resource for increasing the efficiency of diamond-based dynamic nuclear polarization devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.