Abstract

Optical homodyne detection is examined in view of joint probability distribution. It is usually discussed that the relative phase between independent laser fields are localized by photon-number measurements in interference experiments such as homodyne detection. This provides reasoning to use operationally coherent states for laser fields in the description of homodyne detection and optical quantum-state tomography. Here, we elucidate these situations by considering the joint probability distribution and the invariance of homodyne detection under the phase transformation of optical fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.