Abstract

A novel approach to cavity ringdown spectroscopy uses a continuous-wave laser and a rapidly swept optical cavity to shift the frequency of optical radiation stored in the cavity. This frequency-shifted radiation from the ringdown cavity is then combined with incident laser radiation to generate optical heterodyne signals, simply and efficiently. A noise-limited absorbance sensitivity of 3×10 −9 cm −1 is realised, using ∼35 μW of single-mode radiation from a 1.53 μm tunable diode laser. The resonance properties of a swept optical cavity simplify this heterodyne-detected technique by avoiding the customary need for a fast optical switch or for wavelength-locking of cavity length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call