Abstract

We demonstrate a real-space imaging of a heterodyne signal of light that is produced as a result of the Brillouin light scattering by coherently driven magnons in magnetostatic modes. With this imaging technique, we characterize surface magnetostatic modes (Damon-Eshbach modes) in a one-dimensional magnonic crystal, which is formed by patterned aluminum strips deposited on the ferromagnetic film. The modified band structures of the magnonic crystal are deduced from the Fourier transforms of the real-space images. The heterodyne imaging provides a simple and powerful method to probe magnons in structured ferromagnetic films, paving a way to investigate more complex phenomena, such as Anderson localization and topological transport with magnons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call