Abstract

The real-time temperature measurement of nanostructured materials is particularly attractive in view of increasing needs of local temperature probing with high sensitivity and resolution in nanoelectronics, integrated photonics, and biomedicine. Light-induced heating and Raman scattering of single-walled carbon nanotubes with adsorbed gold nanoparticles decorating silica microparticles are reported, by both green and near IR lasers. The plasmonic shell is used as nanoheater, while the single-walled carbon nanotubes are Raman active and serve as a thermometer. Stokes and Anti-Stokes Raman spectra of single-walled carbon nanotubes serve to estimate the effective light-induced temperature rise on the metal nanoparticles. The temperature rise is constant with time, indicating stability of the adsorption density. The effective temperatures derived from Stokes and Anti-Stokes intensities are correlated with those measured in a heating stage. The resolution of the thermal experiments in our study was found to be 5-40 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call