Abstract

Two architectures in space and frequency domains are given to optically implement wavelet transforms (WT) in real time and in 2-D parallel, which in principle can circumvent the 4-D display requirement for 2-D WT. Specifically, we have experimentally performed the 2-D Haar WT of binary images directly in the space domain by means of a shadow-casting system using 2-D lenslet arrays and micropolarizers. Shadowing is natural for scale changes, and polarization encoding is necessary to realize the bipolar nature of Haar wavelets. Haar wavelets have two elementary types in 2-D, a corner mother wavelet and an edge mother wavelet. Both are useful for the real-time feature extraction for multiple-resolution image processing and pattern recognition. Moreover, a holographic processor that implements the 2-D Haar WT through filtering operations in the frequency domain is numerically simulated. The feasibility of both architectures is demonstrated and compared by computer simulations and experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call