Abstract

A scheme of optical generation of high-quality millimeter-wave based on the optically injected vertical-cavity- surface-emitting laser (VCSEL) subject to polarization-rotated optical feedback is proposed in this paper. Based on the spin-flip model (SFM), wich external disturbances taken into account, the performances of the millimeter-wave generated by this scheme are numerically investigated. The results show that under suitable operation conditions, a slave VCSEL (S-VCSEL) injected by a master VCSEL (M-VCSEL) will operate in a period-one (P1) oscillation state and the output optical intensity of S-VCSEL looks like being modulated by a microwave signal. By adjusting the injection strength iand the frequency detuning between S-VCSEL and M-VCSEL, a millimeter-wave, whose frequency can be continuously adjusted in a large range from 30 GHz to 60 GHz, is obtained. After introducing polarization-rotated optical feedback, the linewidth of millimeter-wave can be obviously narrowed by adjusting the feedback strength i and the feedback delay time . For a millimeter-wave with a linewidth of 5.509 MHz, generated by the optically injected VCSEL, its linewidth can be reduced to 230.2 kHz under optimum feedback parameters. The results obtained in this paper are helpful for acquiring high-quality millimeter-wave used in high speed Radio-over-Fiber (RoF) system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.