Abstract

The valence subband structures, optical gain spectra, transparency carrier densities, and transparency radiative current densities of different compressively strained InGaAlAs quantum wells with Al 0.3Ga 0.7As barriers are systematically investigated using a 6 × 6 k · p Hamiltonian including the heavy hole, light hole, and spin–orbit splitting bands. The results of numerical calculations show that the maximum optical gain, transparency carrier densities, transparency radiative current densities, and differential gain of InGaAlAs quantum wells can be enhanced by introducing more compressive strain in quantum wells. However, further improvement of the optical properties of InGaAlAs quantum wells becomes minimal when the compressive strain is higher than approximately 1.5%. The simulation results suggest that the compressively strained InGaAlAs quantum wells are of advantages for application in high-speed 850-nm vertical-cavity surface-emitting lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.