Abstract

In order to reduce the polarization-induced impact on the incoherent optical frequency domain reflectometry based single-mode fiber-optic distributed temperature sensor, a synchronous polarization scrambling technique with a low-speed electrically driven polarization controller (EPC) is presented. The polarization-induced error is derived by error analysis. By simulating the distribution of the states of polarization on the Poincare sphere, optimized EPC driven parameters are selected. The polarization scrambling process is synchronous with the frequency response measurement of the Raman backscattered light. Additionally, the scrambling period is set to be equal to the measurement time of each frequency response. Experimental results show that the polarization-induced error is ∼±3°C, and it is basically in accord with the result of a theoretical error analysis. By using the synchronous polarization scrambling technique, the polarization-induced fluctuation of the measured temperature distribution has been almost eliminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.