Abstract

We proposed an optical frequency domain reflectometry based on a multilayer perceptron. A classification multilayer perceptron was applied to train and grasp the fingerprint features of Rayleigh scattering spectrum in the optical fiber. The training set was constructed by moving the reference spectrum and adding the supplementary spectrum. Strain measurement was employed to verify the feasibility of the method. Compared with the traditional cross-correlation algorithm, the multilayer perceptron achieves a larger measurement range, better measurement accuracy, and is less time-consuming. To our knowledge, this is the first time that machine learning has been introduced into an optical frequency domain reflectometry system. Such thoughts and results would bring new knowledge and optimization to the optical frequency domain reflectometer system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.