Abstract
We report on the experimental realization and a systematic study of optical frequency comb generation in doubly resonant intracavity second harmonic generation (SHG). The efficiency of intracavity nonlinear processes usually benefits from the increasing number of resonating fields. Yet, achieving the simultaneous resonance of different fields may be technically complicated, all the more when a phase matching condition must be fulfilled as well. In our cavity we can separately control the resonance condition for the fundamental and its second harmonic, by simultaneously acting on an intracavity dispersive element and on a piezo-mounted cavity mirror, without affecting the quasi-phase matching condition. In addition, by finely adjusting the laser-to-cavity detuning, we are able to observe steady comb emission across the whole resonance profile, revealing the multiplicity of comb structures, and the substantial role of thermal effects on their dynamics. Lastly, we report the results of numerical simulations of comb dynamics, which include photothermal effects, finding a good agreement with the experimental observations. Our system provides a framework for exploring the richness of comb dynamics in doubly resonant SHG systems, assisting the design of chip-scale quadratic comb generators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.