Abstract
Continuous-variable quantum key distribution (CVQKD) provides an approach for secure communication in optical fiber communication systems. However, its practical implementation has been hindered by low secret key bit rates that are usually limited to several bits/s to hundreds of kbits/s at distances of more than 25 kilometers. In this paper, we use a pair of optical frequency combs (OFCs) for both multiple parallel transmission and coherent reception, which assign multiple sub-channels involving multiple independent secret keys in a single fiber to increase the key bit rate. The first and last sub-channels are selected for propagating phase references to compensate the phase offset between two free-running combs. We analyze possible excess noise caused by dispersive walk-off in the transmission, imperfect phase compensation in the reception and photon leakage from the phase references. Compared to the previous single-channel CVQKD method, simulation results show more than a factor of 20 increase in the secret key rate at a transmission distance of 35 km and the number of comb lines of 35.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.