Abstract
A systematic approach for the calculation of free-induction decay (FID) of paramagnetic species in time domain was developed. The approach allows the prediction of the temporal behavior of FID intensity and polarization in a magnetic field. The technique was illustrated with two examples, a stable paramagnetic molecule (NO) and a very reactive short-lived hydroxyl radical. The results of the calculations are in excellent agreement with available literature experimental data on NO molecule. Significant rotation of the polarization plane, even in a relatively weak magnetic field, potentially will allow selective detection of trace amounts of paramagnetic species (such as short-lived reactive free radicals) on a background signal originating from non-paramagnetic species typically present in great excess.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.