Abstract

A main challenge in Heat-Assisted Magnetic Recording technology is the build-up of contaminants called smear on the near field transducer. In this paper, we investigate the role of optical forces originating from the electric field gradient in the formation of smear. First, based on suitable theoretical approximations, we compare this force with air drag and the thermophoretic force in the head-disk interface for two smear nanoparticle shapes. Then, we evaluate the force field’s sensitivity to the relevant parameter space. We find that the smear nanoparticle’s refractive index, shape, and volume significantly impact the optical force. Further, our simulations reveal that the interface conditions, such as spacing and the presence of other contaminants, also influence the magnitude of the force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.