Abstract
We report a novel force sensor exploiting the interaction between plasmonic nanostructures and upconversion nanoparticles (UCNPs). The nanosensor is composed of a gold nanodisk and UCNPs separated by a flexible polymer layer. The gold nanodisk is designed to exhibit a plasmon resonance that selectively enhances one of the emission bands of the UCNPs while leaving the other ones largely unaffected. As the nanosensor is compressed or stretched by an external force, the polymer layer thickness changes, modulating the plasmon-UCNP coupling. The resulting changes in the luminescence intensity provides the basis for sensing. Furthermore, the nanosensor employs ratiometric sensing which makes it highly robust against any environmental variations. Our nanosensors exhibit two orders of magnitude higher responsivity than previously reported UCNP-based force sensors. They can be prepared as an on-chip sensor array or in a colloidal solution, making them suitable for a variety of applications in biology and robotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.