Abstract

The optical force distribution in the cylindrical cloak under arbitrary incident waves is presented. We show that on the inner surface of the cloak both the induced surface currents and polarization charges interact with the waves and give opposite radiation pressure onto the inner surface. The Lorentz force in the cloak can contribute to change the trajectory of the rays, while in some cases it may only reflect the rays having a tendency to decrease the total energy it carries. The force is symmetric and in balance. Therefore the total momentum transfer from the waves to the cylindrical cloak is zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.