Abstract

We propose a double-layer graphene sheets side coupling to a strip of graphene to obtain the optical pulling or pushing force. Combined with coupled mode theory and finite-difference time-domain simulations, it is found that the conveyor belt effect can be realized in conjunction with the lateral optical equilibrium effect upon the radiation loss κe equal to the intrinsic loss κo. The maximum total optical force acting on the strip in the symmetric mode (S-mode) can be up to ∼5.95 in the unit of 1/c and the anti-symmetric (AS-mode) mode reach ∼2.75 1/c. The optical trapping potential Ux and optical trapping force Fx for the S-mode have a value around -22.5 kBT/W and 240 pN/W, while for the AS-mode can up to ∼-56 kBT/W and 520 pN/W, respectively. Our work opens a new avenue for optical manipulation with potential applications in optoelectronic devices and lab-on-a-chip platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.