Abstract

We theoretically investigate the optical focusing of a rubidium Bose-Einstein condensate onto a planar surface. Our analysis uses a Gaussian variational method that includes the effects of two-body atom-atom interactions and three-body recombination losses. The essential factors such as the width, peak density and atom loss rate of the focused BEC profile on the surface are investigated and compared to Gross-Pitaevskii numerical simulations. We find a reasonable agreement in the results between our analytical approach and the numerical simulations. Our analysis predicts that condensates of $10^5$ atoms could be focused down to $\sim 10$nm widths, potentially allowing nanometer-scale atomic deposition with peak densities greater than $10^5$ atoms/$\mu$m$^2$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call