Abstract

A kind of planar metallic lenses is proposed to realize optical focusing in the visible wavelength through a metallic film with nano-scale slit arrays, which have the same depth but tuning widths. Due to the subwavelength and aperiodic nature of planar metallic lenses, we present the rigorous electromagnetic analysis by using two dimensional finite difference time domain method. The electromagnetic wave transports through the tuning slits in the form of surface plasmon polaritons, and gets the required phase retardations to focusing at the focal plane. We analyze the focusing characteristics of planar dielectric lens and metallic lens with tuning widths that are obtained by generalizing the relevant phase delay, for different incidence polarization waves (TM polarized case and TE polarized case). The computational calculation results show that, extraordinary optical transmission of surface plasmon polaritions through non uniform nano-scale metallic slits is observed, and it has contributions to the optical focusing, but cannot increase the focal energy compared with dielectric planar lens with the same profile, and the metallic lenses are more sensitive to the polarization of incidence wave than that of dielectric lenses. The influence of metallic lenses’ thickness on the focal characteristics has been analyzed also.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.