Abstract

In this chapter we review the estimation of the two-dimensional apparent motion field of two consecutive images in an image sequence. This apparent motion field is referred to as optical flow field, a two-dimensional vector field on the image plane. Because it is nearly impossible to cover the vast amount of approaches in the literature, in this chapter we set the focus on energy minimization approaches which estimate a dense flow field. The term dense refers to the fact that a flow vector is assigned to every (non-occluded) image pixel. Most dense approaches are based on the variational formulation of the optical flow problem, firstly suggested by Horn and Schunk. Depending on the application, density might be one important property besides accuracy and robustness. In many cases computational speed and real-time capability is a crucial issue. In this chapter we therefore discuss the latest progress in accuracy, robustness and real-time capability of dense optical flow algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.