Abstract
This paper presents a compressed-domain motion object extraction algorithm based on optical flow approximation for MPEG-2 video stream. The discrete cosine transform (DCT) coefficients of P and B frames are estimated to reconstruct DC + 2AC image using their motion vectors and the DCT coefficients in I frames, which can be directly extracted from MPEG-2 compressed domain. Initial optical flow is estimated with Black’s optical flow estimation framework, in which DC image is substituted by DC + 2AC image to provide more intensity information. A high confidence measure is exploited to generate dense and accurate motion vector field by removing noisy and false motion vectors. Global motion estimation and iterative rejection are further utilized to separate foreground and background motion vectors. Region growing with automatic seed selection is performed to extract accurate object boundary by motion consistency model. The object boundary is further refined by partially decoding the boundary blocks to improve the accuracy. Experimental results on several test sequences demonstrate that the proposed approach can achieve compressed-domain video object extraction for MPEG-2 video stream in CIF format with real-time performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.