Abstract
Dynamic pattern analysis and motion extraction can be efficiently addressed using optical flow techniques. This article presents a generalization of these questions to non-flat surfaces, where optical flow is tackled through the problem of evolution processes on non-Euclidian domains. The classical equations of optical flow in the Euclidian case are transposed to the theoretical framework of differential geometry. We adopt this formulation for the regularized optical flow problem, prove its mathematical well-posedness and combine it with the advection equation. The optical flow and advection problems are dual: a motion field may be retrieved from some scalar evolution using optical flow; conversely, a scalar field may be deduced from a velocity field using advection. These principles are illustrated with qualitative and quantitative evaluations from numerical simulations bridging both approaches. The proof-of-concept is further demonstrated with preliminary results from time-resolved functional brain imaging data, where organized propagations of cortical activation patterns are evidenced using our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.