Abstract

A digital image analysis system for extracting motion information from time-varying digital light microscopy images is presented. This system is then used to map out the movement profile of the surface layer of cells in contact with the substratum through the extracellular matrix (ECM) of the migrating Dictyostelium discoideum slug. From digital high magnification light microscopy images, the morphology of moving cells within the tail region of a young migrating wild-type WS380B slug is described, and compared with the morphology of streaming D. discoideum cells. It is shown that: (i) when the migrating tip of the slug touches the agar substrate, cells in the anterior ventral surface layer of the tip region slow dramatically; (ii) overall cell movement in the ventral surface layer of the migrating D. discoideum slug is slower than the movement of the slug as a whole; and (iii) in less than 10% of cases a wave of movement (groups of cells synchronously slowing down and then accelerating forward) propagates down the slug axis at approx. 1.2 microns s-1. The time interval between waves may be related to the time interval between tip-to-substratum contact that is periodically re-established during normal WS380B slug migration after each aerial projection of the tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.