Abstract

Abstract We theoretically investigate the ability to design optical filters from a single material and a single layer of randomly dispersed resonant dielectric particles, defining a random metasurface. Using a Bayesian and generalized Mie inverse-design approach, we design particle radii distributions that give rise to longpass, shortpass, bandpass, and bandstop spectral bands in the infrared. The optical response is shown to be directly related to electric and magnetic multipole scattering of the constituent particles and their near field coupling. We discuss the effect of the particle size distribution and particle–particle coupling interactions on filter design in random systems lacking long-range order.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call