Abstract

In this study, first-principles time-dependent density functional theory calculations were used to demonstrate the possibility to modulate the amplitude of the optical electric field (E-field) near a semiconducting graphene nanoribbon. A significant enhancement of the optical E-field was observed 3.34 Å above the graphene nanoribbon sheet, with an amplitude modulation of approximately 100 fs, which corresponds to a frequency of 10 THz. In general, a six-fold E-field enhancement could be obtained, which means that the power of the obtained THz is about 36 times that of incident UV light. We suggest the use of semiconducting graphene nanoribbons for converting visible and UV light into a THz signal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.