Abstract
We study the optical field's quadrature excitation state Xm|0〉, where X = (a + a†)/√2 is the quadrature operator. We find it is ascribed to the Hermite-polynomial excitation state. For the first time, we determine this state's normalization constant which turns out to be a Laguerre polynomial. This is due to the integration method within the ordered product of operators (IWOP). The normalization for the two-mode quadrature excitation state is also completed by virtue of the entangled state representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.