Abstract

The development of optical-fiber amplifiers allowed a dramatic increase in the capacity of optical transmission systems while reducing system costs. Capacity increases are possible because the high output powers afforded by optical-fiber amplifiers support higher bit rates, while their broad bandwidth and slow gain dynamics allow multichannel operation. This benefit comes at the expense of having to manage signal-to-noise ratio degradations due to the accumulation of amplifier noise and dispersion distortions accumulated over the total system link. Furthermore, nonlinear optical effects become significant with the use of high power signals over long lengths of fiber, causing cross talk among the different channels and increasing signal distortions. To fully exploit the potential capacity of wavelength division multiplexing systems, the optical characteristics of the fibers and optical-fiber amplifiers must be optimized. The optical amplifiers should have low noise and flat gain, which can be achieved by using 980-nm pump lasers, optimized fiber glass composition, and gain-flattening filters. The optical fibers should have a small nonzero dispersion and large effective area. Both features can be achieved by optimizing the fiber index profile. This paper summarizes the state of the art in these components and points to directions for future exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.