Abstract

We demonstrated temperature sensing of a fiber with nanostructured cladding, which was constructed by titanium dioxide TiO2 nanoparticles self-assembled onto a side polished optical fiber (SPF). Significantly enhanced interaction between the propagating light and the TiO2 nanoparticles (TN) can be obtained via strong evanescent field of the SPF. The strong light-TN interaction results in temperature sensing with a maximum optical power variation of ~4dB in SPF experimentally for an external environment temperature varying from -7.8°C to 77.6°C. The novel temperature sensing device shows a linear correlation coefficient of better than 99.4%, and a sensitivity of ~0.044 dB/°C. The TN-based all-fiber-optic temperature sensing characteristics was successfully demonstrated, and it is compatible with fiber-optic interconnections and high potential in photonics applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.