Abstract

Remote and accurate temperature measurements in severe environments are of great importance. A 1525-nm wavelength located in the C band of optical fiber communication is used as a pumping light source for NaYF4:Er3+ phosphor possessing high upconversion efficiency. The upconversion luminescence characteristics were demonstrated in the temperature range of 160-400 K. Based on the thermal coupling energy level theory, the temperature measurement principle of the fluorescence intensity ratio is analyzed. The energy gap between the 2H11/2 and 4S3/2 energy levels of the Er3+ ions is approximately 787cm-1, which is appropriate for a temperature sensor. The experimental results indicated that its maximum temperature sensitivity was 0.00335K-1. The proposed optical fiber temperature sensor indicates good hysteresis and repeatability and has potential applications in resisting electromagnetic interference and remote temperature sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call