Abstract
A refractive index (RI) fiber sensor with low detection limit but large dynamic range is proposed and demonstrated using an exposed core microstructured optical fiber. The exposed-core fiber is highly birefringent due to its asymmetry and also supports multimode propagation; thus, can be used simultaneously as a Mach-Zehnder and Sagnac interferometer. The Mach-Zehnder interference is significantly more phase sensitive to RI due to a longer effective path length difference. This leads to a lower detection limit compared to that for the Sagnac interferometer, which has a larger free spectral range that allows the dynamic range of the RI measurement to be extended. By combining these two interferometers, the proposed sensor achieves a detection limit of as low as 6.02 × 10−6 refractive index units (RIU) while maintaining a large dynamic range from 1.3320 to 1.3465 RIU. The proposed sensor also has the advantages of biocompatibility, low cost, high stability, small size, ability to operate remotely and to be fabricated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.