Abstract

AbstractIn the present work a fiber-optic loop-sensor is designed and tested for possible applications in structural health monitoring of composite materials. It is known that bending an optical fiber beyond a critical curvature leads to loss of optical power through the curved region. The optical power loss depends on the radius of curvature of the loop. The optical power can be measured by a photodetector and a change in the power due a change to the curvature can be measured. In the present research optical fiber-optic loop-sensors are developed that can exploit this concept. Single-mode optical fiber sensors having different loop radii, from 6-10 mm, are fabricated and calibrated for applied strain on the loop. The calibration is carried out using a 0.098 N load cell and a computer controlled translation stage having 50 nm step resolution. Results show that the sensors provide highly repeatable curves for loading and unloading cycles. Smaller loop radii lead to higher optical power losses, resulting in higher sensitivity. Calibration results show that such sensors can be used in structural health monitoring applications. In this approach the coating and cladding of optical fibers are maintained intact; therefore, the sensors are robust and can withstand several composites fabrication processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.