Abstract
An optical fiber in-line Mach-Zehnder interferometer based on an inner air-cavity with long cavity length is demonstrated. The device is fabricated by using femtosecond laser to inscribe a waveguide structure in the optical fiber core, followed by discharging the waveguide area with a fusion splicer. The inner air-cavity structure is highly robust, and the relatively long cavity length corresponds to a small free spectral range, which makes it possible to implement accurate measurement. Such an inner air-cavity device fabricated in single mode fiber has good high temperature sustainability. The device is also “open” to the external environment when being fabricated in multimode fiber, thus supporting refractive index measurement. The proposed device is attractive in many optical fiber sensing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.