Abstract
Obtaining the strain data all along the optical fiber, with adequate spatial resolution and strain accuracy, opens new possibilities for structural tests and for structural health monitoring. Formerly, only point sensors, as strain gages or fiber Bragg grating, were available, and information about the response to loads was restricted only to those points on which the sensors were bonded. Unless a sensor was located near the damage initiation point, details about the failure initiation and growth were lost. With a distributed system, the information is given as an array of data with the position in the optical fiber and the strain or temperature data at this point. In this article, the physical principles underlying the different techniques for distributed sensing are discussed, a classification is done based on the backscattered wavelength; this is important to understand its possibilities and performances. The definition of performance for distributed sensors is more difficult than for traditional point sensors because the performance depends on a combination of related measurement parameters. For example, accuracy depends on the spatial resolution, acquisition time, distance range, or cumulated loss prior to measurement location. The field of applications of this new technology is very wide; results of the structural tests of a 40 m long wind turbine blade, detecting the location and load of onset of buckling, and the results of the delamination detection in a composite plate, are presented as examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.